
Staring	into	the	Abyss:	An	Evaluation	of	
Concurrency	Control	with	One	Thousand	Cores	

Xiangyao	Yu1												George	Bezerra1 Andrew	Pavlo2

Srinivas Devadas1						 Michael	Stonebraker1

1	CSAIL,
Massachusetts	Institute	of	Technology

2	Dept.	of	Computer	Science
Carnegie	Mellon	University

Published	in	VLDB	2014

Presenter	:	Vaibhav	Jain

1



Motivation(1)

ØThe	era	of	single-core	CPU	speed-up	is	over.

ØNumber	of	cores	on	a	chip	is	increasing	exponentially
§ Increase	computation	power	by	thread	level	parallelism

§ 1000-core	chips	are	near…

Xeon	Phi	(up	to	61	cores) Tilera (up	to	100	cores)

2



Motivation(2)

ØIs	the	DBMS	ready	to	be	scaled	?
§ Most	DBMSs	still	focus	on	single-threaded	performance

§ Existing	works	on	multi-cores	focus	on	small	core	count

3



Objective

• To	evaluate	transaction	processing	at	1000	cores.
• Focus	on	one	scalability	challenge	:	Concurrency	control.
• Discuss	the	bottlenecks	and	improvements	needed.

4



Implementation

• Concurrency	Control	Schemes
• DBMS	TestBed

5



Concurrency	Control	Schemes

CC Scheme Description

DL_DETECT 2PL	with	deadlock	detection

NO_WAIT 2PL	with	non-waiting	deadlock	prevention

WAIT_DIE 2PL	with	wait-and-die	deadlock	prevention

TIMESTAMP Basic T/O	algorithm

MVCC Multi-version T/O

OCC Optimistic	concurrency	control

HSTORE T/O	with	partition-level	locking

Two–Phase	
Locking	(2PL)

Timestamp	
Ordering	(T/O)

Partitioning

6



Two-Phase	Locking	(1)

7



Two-Phase	Locking	(2)

8

ØLock	conflict
§ DL_DETECT:	always	wait.	
§ NO_WAIT:	always	abort.	
§ WAIT_DIE:	wait	if	older,	otherwise	abort

ØExample	systems
§ Ingres,	Informix,	IBM	DB2,	MS	SQL	Server,	MySQL	(InnoDB)

deadlock	detection

deadlock	prevention



Concurrency	Control	Schemes

CC Scheme Description

DL_DETECT 2PL	with	deadlock	detection

NO_WAIT 2PL	with	non-waiting	deadlock	prevention

WAIT_DIE 2PL	with	wait-and-die	deadlock	prevention

TIMESTAMP Basic T/O	algorithm

MVCC Multi-version T/O

OCC Optimistic	concurrency	control

HSTORE T/O	with	partition-level	locking

Two–Phase	
Locking	(2PL)

Timestamp	
Ordering	(T/O)

Partitioning

9



Timestamp	Ordering	(T/O)	(1)

Each	transaction	has	a	unique	timestamp	indicating	the	serial	order.
1.			TIMESTAMP	(Basic	Timestamp	Ordering)
• R/W	request	rejected	if	tx timestamp <	timestamp	of	last	write.

2.			MVCC	(Multi-Version	Concurrency	Control)
• Every	write	op	creates	a	new	timestamped	version	
• For	read	op,	DBMS	decides	which	version	it	accesses.

10



Timestamp	Ordering	(T/O)	(2)

3.			OCC	(Optimistic Concurrency Control)
• Private	workspace	of	each	transaction.
• At	commit	time,	if	any	overlap,	tx is	aborted	and	restarted.
• Advantage	:	short	contention	period.

Example	systems
Oracle,	Postgres,	MySQL	(InnoDB),	SAP	HANA,	MemSQL,	MS	Hekaton

11



Concurrency	Control	Schemes

CC Scheme Description

DL_DETECT 2PL	with	deadlock	detection

NO_WAIT 2PL	with	non-waiting	deadlock	prevention

WAIT_DIE 2PL	with	wait-and-die	deadlock	prevention

TIMESTAMP Basic T/O	algorithm

MVCC Multi-version T/O

OCC Optimistic	concurrency	control

HSTORE T/O	with	partition-level	locking

Two–Phase	
Locking	(2PL)

Timestamp	
Ordering	(T/O)

Partitioning

12



H-Store

• Database	divided	into	disjoint	memory	subsets	called	partitions.
• Each	partition	protected	by	locks.
• Tx acquires	locks	to	all	partitions	it	needs	to	access.
• DBMS	assigns	it	a	timestamp	and	adds	it	to	lock	queues.

13



DBMS	Test	Bed	(1)
Graphite	:	CPU	simulator,	scales	upto	1024	cores.
• Application	threads	mapped	to	simulated	core	threads.
• Simulated	threads	mapped	to	multiple	processes	on	host	machines.

14



DBMS	Test	Bed	(2)

• Implemented	light-weight	pthread based	DBMS.
• Allows	to	swap	different	concurrency	schemes.
• Ensures	no	other	bottlenecks	than	concurrency	control.
• Reports	transaction	statistics.	

15



General	Optimizations	

1. Memory	Allocation:	
Custom	malloc ,	resizable	memory	pool	for	each	thread.
2.			Lock	Table:
Instead	of	centralized	lock	table,	per-tuple	locks
3.			Mutexes:
Avoid	mutex on	critical	path.	
- For	2PL,	centralized	deadlock	detector
- For	t/o	:	allocating	unique	timestamps.

16



Scalable	2PL

1. Deadlock	Detection	
- Making	deadlock	detector	lock	free	by	keeping	local	wait-for	graph.
- Thread	searches	for	cycles	in	partial	wait-for	graph.

2.			Lock	Thrashing
- Holding	locks	until	commit	=>	bottleneck	in	concurrent	Txs.
- Timeout	threshold	:	abort	Tx if	wait	time	exceeds	timeout.

17



Scalable	T/O

1. Timestamp	Allocation
a) Batched	atomic	addition	
- Manager	returns	multiple	timestamps	for	a	request.
b)			CPU	clocks	
- Read	logical	clock	of	core,	concatenate	with	thread	id.
- requires	synchronized	clocks.
c) Hardware	counters
- Physically	located	at	center	of	CPU.

18



Evaluation
Read-Only	Workload

19



Read	Only	Workload

20

Ø 2PL	schemes	are	scalable	for	read	only	benchmarks



Read	Only	Workload

21

Ø 2PL	schemes	are	scalable	for	read	only	benchmarks
Ø Timestamp	allocation	limits	scalability



Read	Only	Workload

22

Ø 2PL	schemes	are	scalable	for	read	only	benchmarks
Ø Timestamp	allocation	limits	scalability
ØMemory	copy	hurts	performance	



Write	Intensive	(medium	contention)

23

No_Wait,	Wait_Die scales	better	than	others.
DL_Detect inhibited	by	lock	thrashing.



Write	Intensive	(High	contention)

24

Ø Scaling	stops	at	small	core	count(64)



Write	Intensive	(High	contention)

25

Ø Scaling	stops	at	small	core	count(64)
ØNO_WAIT	has	good	performance	but	falls	due	to	thrashing.



Write	Intensive	(High	contention)

26

Ø Scaling	stops	at	small	core	count	(64)
ØNO_WAIT	has	good	performance	but	falls	due	to	thrashing.
ØOCC	wins	at	1000	cores as	one	Tx always	commits.	



More	Analysis

1. Short	Transactions					=>	Low	Lock	contention
Longer	Transactions			=>	Timestamp	allocation	not	a	bottleneck.

2. More	read	transactions		=>	Better	throughput.

3. Multi	partition	transactions		=>	H-Store	scheme	performs	bad.
Partitioned	workloads												=>	H-Store	best	algorithm

27



Bottlenecks	Summary

28

Concurrency	
Control

Waiting
(Thrashing)

High	Abort	
Rate

Timestamp	
Allocation

Multi-
partition

DL_DETECT

NO_WAIT

WAIT_DIE

TIMESTAMP

MULTIVERSION

OCC

HSTORE



Summary

All	algorithms	fail	to	scale	as	core	increases.
ØThrashing limits	the	scalability	of	2PL	algorithms
ØTimestamp	allocation limits	the	scalability	of	T/O	algorithms

29



Project	Ideas

• New	concurrency	control	approaches	to	tackle	scalability	problem.
• Hardware	solutions	to	DBMS	bottlenecks	unsolvable	in	software	side.
• Hybrid	approach	:	Switch	b/w	schemes	depending	on	workload.

30



Questions	

31



Thrashing

32

v"uz"y"x"tuples 

transactions A" B" C" D"

Locking Waiting 


