Staring into the Abyss: An Evaluation of
Concurrency Control with One Thousand Cores

Xiangyao Yu'! George Bezerra'l Andrew Pavlo?

Srinivas Devadast Michael Stonebraker!

Published in VLDB 2014

Presenter : Vaibhav Jain

Motivation(1)

»The era of single-core CPU speed-up is over.

» Number of cores on a chip is increasing exponentially
" Increase computation power by thread level parallelism

= 1000-core chips are near...

Xeon Phi (up to 61 cores) Tilera (up to 100 cores)

Motivation(2)

»|s the DBMS ready to be scaled ?

= Most DBMSs still focus on single-threaded performance

= Existing works on multi-cores focus on small core count

Objective

* To evaluate transaction processing at 1000 cores.
* Focus on one scalability challenge : Concurrency control.
* Discuss the bottlenecks and improvements needed.

Implementation

e Concurrency Control Schemes
* DBMS TestBed

Concurrency Control Schemes

CC Scheme

DL _DETECT
Two—Phase
Locking (2PL) < NO_WAIT

WAIT DIE
TIMESTAMP
Timestamp
Ordering (T/0) < MVCC
OCC

Partitioning =~
{ HSTORE

Description

2PL with deadlock detection
2PL with non-waiting deadlock prevention

2PL with wait-and-die deadlock prevention

Basic T/O algorithm
Multi-version T/O
Optimistic concurrency control

T/O with partition-level locking

Two-Phase Locking (1)

<€ Growing Phase > Shrinking Phase
Transaction
Lock A Lock B Lock C Commit/Abort

T—— — /

Computation Release Lock A, B, C

Two-Phase Locking (2)

» Lock conflict
» DL_DETECT: always wait. deadlock detection
= NO_WAIT: always abort.

} deadlock prevention
= WAIT_DIE: wait if older, otherwise abort

»Example systems
= Ingres, Informix, IBM DB2, MS SQL Server, MySQL (InnoDB)

Concurrency Control Schemes

~

DL DETECT 2PL with deadlock detection

Two-Phase NO WAIT 2PL with non-waiting deadlock prevention
Locking (2PL)

WAIT_DIE 2PL with wait-and-die deadlock prevention

A\ N4

TIMESTAMP Basic T/O algorithm

Timestamp ;)
Ordering (T/0) < MVCC Multi-version T/O

OCC Optimistic concurrency control

-

Partitioning { HSTORE T/O with partition-level locking

Timestamp Ordering (T/O) (1)

Each transaction has a unique timestamp indicating the serial order.
1. TIMESTAMP (Basic Timestamp Ordering)

* R/W request rejected if tx timestamp < timestamp of last write.

2. MVCC (Multi-Version Concurrency Control)
* Every write op creates a new timestamped version

* For read op, DBMS decides which version it accesses.

Timestamp Ordering (T/O) (2)

3. OCC (Optimistic Concurrency Control)
* Private workspace of each transaction.
* At commit time, if any overlap, tx is aborted and restarted.

* Advantage : short contention period.

Example systems
Oracle, Postgres, MySQL (InnoDB), SAP HANA, MemSQL, MS Hekaton

Concurrency Control Schemes

" DL _DETECT 2PL with deadlock detection

Two—Phase
Locking (2PL) < NO_WAIT 2PL with non-waiting deadlock prevention

WAIT_DIE 2PL with wait-and-die deadlock prevention

A\ Y 4

Timestamp TIMESTAMP Basic T/O algorithm

Ordering (T/0)
< MVCC Multi-version T/O

OCC Optimistic concurrency control

-

Partitioning { HSTORE T/O with partition-level locking

H-Store

* Database divided into disjoint memory subsets called partitions.
* Each partition protected by locks.
* Tx acquires locks to all partitions it needs to access.

* DBMS assigns it a timestamp and adds it to lock queues.

DBMS Test Bed (1)

Graphite : CPU simulator, scales upto 1024 cores.
* Application threads mapped to simulated core threads.
e Simulated threads mapped to multiple processes on host machines.

Application Target Multicore Host Machines
(" —) :
]
[B—]
——]
[—]
[]

/N

hdnday

_ ~/

DBMS Test Bed (2)

* Implemented light-weight pthread based DBMS.
* Allows to swap different concurrency schemes.
* Ensures no other bottlenecks than concurrency control.

* Reports transaction statistics.

General Optimizations

1. Memory Allocation:

Custom malloc, resizable memory pool for each thread.
2. Lock Table:
Instead of centralized lock table, per-tuple locks

3. Mutexes:

Avoid mutex on critical path.
- For 2PL, centralized deadlock detector

- For t/o : allocating unique timestamps.

Scalable 2PL

1. Deadlock Detection
- Making deadlock detector lock free by keeping local wait-for graph.

- Thread searches for cycles in partial wait-for graph.

2. Lock Thrashing
- Holding locks until commit => bottleneck in concurrent Txs.

- Timeout threshold : abort Tx if wait time exceeds timeout.

Scalable T/O

1. Timestamp Allocation

a) Batched atomic addition

- Manager returns multiple timestamps for a request.
b) CPU clocks

- Read logical clock of core, concatenate with thread id.
- requires synchronized clocks.

c) Hardware counters

- Physically located at center of CPU.

Evaluation
Read-Only Workload

=
S

v o—e DL DETECT a—a TIMESTAMP 1

S 12 |oo NOWAT e MvCC . -

o Lok 5@ WAIT DIE 0CC |

@)

— a

S 0 .
N\

o 4f 0]

-

S 2f |

IE 0 o ? | | | |

0 200 400 600 800 1000

Number of Cores

Read Only Workload

— 14 T T T T
u e—e DL_DETECT a—a TIMESTAMP «
LC< 12F o=¢ NO WAIT e- o MVCC
c 10} o8 WAIT DIE occ
s 9 : :
AN
o 4f 6 .
)
S 2t -
lE 0 & ? ! ! ! !
0 200 400 600 800 1000

Number of Cores

» 2PL schemes are scalable for read only benchmarks

Read Only Workload

— 14 T T T

u e—e DL_DETECT a—a TIMESTAMP

§ 12 o= NO_WAIT e- o MVCC 7

p 10l o8 WAIT _DIE occ o |

@]

= o

s 5 & !
AN

o 4r 6 .

-}

° 2t i

lE 0 o ? ! ! ! !

0 200 400 600 800 1000

Number of Cores

» 2PL schemes are scalable for read only benchmarks

» Timestamp allocation limits scalability

Read Only Workload

u e—e DL_DETECT a—a TIMESTAMP

S 12 |oo NOWAT oo MvCC .

p 10l o8 WAIT _DIE occ o |

@]

= o

S g 4
AN

o 4f 6 -

-}

° 2t i

lE 0 o ? ! ! ! !

0 200 400 600 800 1000

Number of Cores

» 2PL schemes are scalable for read only benchmarks
» Timestamp allocation limits scalability
» Memory copy hurts performance

Write Intensive (medium contention)

= 4.5 {e—e DL DETECT a—a TIMESTAMP
= 4.0 |o© No_wAIT oo

X oo WAIT_DIE
g 3.5F =

MVCC

OCC S

S 3.0f
< 2.5}
é_Zl)-
% 15_
S 1.0F
(@)

£ 05f 3

0.0LE

@

8

A

ﬂA\

\\

T
O
O

o

A

0 200

No Wait, Wait_Die scales better than others.

400 600 800

Number of Cores

DL _Detect inhibited by lock thrashing.

1000

.

-

23

Write Intensive (High contention)

. 0.25 . . o—o DL DETECT a—a TIMESTAMP

Z o NO WAIT o o MVCC

X020k F e |80 WAIT_DIE OCC

S |8 °

= 0.15F 1A .

Z

é_ 0.10g .

2 : :

o 0.05F . O s

IE O OO 1 ° | | % | %
0 200 400 600 800 1000

Number of Cores

» Scaling stops at small core count(64)

Write Intensive (High contention)

— 0.25 ' ' o—e DL DETECT a—a TIMESTAMP

Z o6 NOWAIT o o MVCC

X 020F F © o.|5-8 WAIT_DIE occ

C

S o1 o

= 0.15f ;\

: *

- o

5 0.10(8 .

E : :

3 0.05 X :

c o o

l_ 0 OO | | | f | 8
0 200 400 600 800 1000

Number of Cores

» Scaling stops at small core count(64)
» NO_WAIT has good performance but falls due to thrashing.

Write Intensive (High contention)

—~ 0.25 ; ; o—o DL DETECT a—a TIMESTAMP

Z o NOWAIT oo MVCC

X020 ° < o|38 WAIT_DIE OoCC

S |8 °

= 0.15F 4a

)

é_ 0.10 B o

> : :

o 0.05F N O

c o o

l_ O 00 | ° | | i | g
0 200 400 600 800 1000

Number of Cores
» Scaling stops at small core count (64)
» NO_WAIT has good performance but falls due to thrashing.
» OCC wins at 1000 cores as one Tx always commits.

More Analysis

1. Short Transactions => Low Lock contention
Longer Transactions => Timestamp allocation not a bottleneck.

2. More read transactions => Better throughput.

3. Multi partition transactions => H-Store scheme performs bad.

Partitioned workloads => H-Store best algorithm

Bottlenecks Summary

Summary

All algorithms fail to scale as core increases.
limits the scalability of 2PL algorithms

» Timestamp allocation limits the scalability of T/O algorithms

29

Project |deas

* New concurrency control approaches to tackle scalability problem.
* Hardware solutions to DBMS bottlenecks unsolvable in software side.
* Hybrid approach : Switch b/w schemes depending on workload.

Questions

Thrashing

transactions n B
tuples ° 0 G Q 0

—> Locking Waiting

